Swift 1.2 Nullability is Improving My Objective C Code

Swift 1.2 introduced ‘nullability’, a feature whereby you can annotate your Objective C headers and declare method parameters, propterties, and returned objects as ‘possibly nil’ or ‘never nil’ (a third edge case will be undiscussed here).

I support a library that might be used with earlier versions of Swift and/or Xcode, so need to use the annotation in a backward compatible fashion.

What I discovered is that the ‘pragma’s don’t generate any warnings so it would appear you can just add those:

#pragma clang assume_nonnull begin // start of interface
// interface
#pragma clang assume_nonnull end // end of interface

However, the ‘nullable’ and ‘non-nullable’ annotations cause older Xcodes errors, and files won’t compile. The workaround is to use this construct:

#if ! __has_feature(nullability)
#define nullable
#define nonnull

So the above is one way to deal with the mechanics of using this new feature. But what of the actual feature itself?

When I sat down and looked at my code, I realized that I was often returning nil for an array that could have returned objects, but no objects met the criteria. After all, we all know that ‘[array count]’ return 0 for a nil array and for an actual array with no objects, right?

But really, this is sloppy coding. In one case, I have a protocol method that can return an array of objects and an optional NSError – if success always return an array and no error, and if failure then no array and an error.

This now maps much better into Swift – I can use ‘if let’ to test for an array, if there process as a successful return, and in no array then use ‘!’ on the NSError as it must be there.

I spent an hour or two really thinking about what I was doing in the public facing interfaces, and tweaking them to be more Swift friendly, which also meant they are now more internally consistent and don’t seem so haphazard.

URL Verifier, Parser, and Scraper in Objective-C

I just updated the second version of my github project, URLFinderAndVerifier. Needing to verify a http URL as it was typed in to toggle an “Accept” button, I searched the web for such a thing, and unfortunately found oodles of them, none of which had any credentials.

Looking closer on another day, I found a site run by Jeff Roberson where he had meticulously worked through RFC-3896, constructing simple regular expressions then combining them to create a full regular expression that should properly parse any valid URL. Note that the standard allows much of what we think of as necessary information to be empty.

So I started with his expressions, then tweaked them slightly to handle more real world conditions, such as forcing a person to enter (the optional) ‘/’ at the start of the path segment (which acts as a end of authority marker).

Using my previous Email verifier test harness, I constructed a test engine that lets you test out various combinations of options. It has three components:

– construct the regular expressions for use in a text file or a NSString constant

– URLSearcher, a class that uses to regular expression to find or verify URLs

– a test app that you use to test various URLs, or “live” input mode


All regular expressions exist in text files that are heavily commented. A pre-processor reads these files and removes comments and extraneous characters (like spaces). This makes the files much more readable and understandable. These partial regular expressions that are used to build a full regular expression based on the options you select in the GUI.

Users can optionally enter Unicode characters, which the regular expression can optionally allow. Given a verified URL, a utility function in URLSearcher converts these syntactically correct strings to ‘%’ encoded ones that fully meet the RFC spec (Europeans should like this!)

Other options are to look for every scheme, or http/https, or http/https/ftp and the ability to spec capture groups to see URL subcomponents: user, host, port, path, query, and fragment.

PS: if you end up using this it would be great if you could give the StackOverflow post an up-arrow.

I finally figured out weakSelf and strongSelf

One problem with using blocks and asynchronous dispatch is that you can get into a retain cycle – the block can retain ‘self’, sometimes in mysterious ways. For instance, if you reference an ivar directly, what appears in the code is ‘theIvar’, the compiler generates ‘self->theIvar’. Thus, ‘self’, as a strong variable, is retained, and the queue retains the block, and the object retains the queue.

Apple recommends first assigning ‘self’ into a weak automatic variable, then referencing that in a block (see 1). Since the block captures the variable along with its decorators (i.e. weak qualifier), there is no strong reference to ‘self’, and the object can get dealloced, and at that moment the weak captured variable turns to nil.

__weak __typeof__(self) weakSelf = self;
dispatch_group_async(_operationsGroup, _operationsQueue, ^
[weakSelf doSomething];
} );

Thinking about this, it occurred to me that ‘weakSelf’ might turn to nil in the middle of ‘doSomething’, but after a few posts on the xcode list, I was given a reference to a clang document that explicitly states that any object within an expression is retained for the complete expression, and only released thereafter (see 2). Whew!

But how about:

__weak __typeof__(self) weakSelf = self;
dispatch_group_async(_operationsGroup, _operationsQueue, ^
[weakSelf doSomething];
[weakSelf doSomethingElse];
} );

Well, in this case, its possible for ‘weakSelf’ to be non-nil for the first method, but not for the second. Hmmm – the above is a simple example, most real code would get much more complex with other usages of ‘weakSelf’.

Apple calls this second example ‘non-trivial’ (see 1), and does what first seems like a bizarre set of steps: first create the ‘weakSelf’ object, then assign that to a ‘strongSelf’:

__weak __typeof__(self) weakSelf = self;
dispatch_group_async(_operationsGroup, _operationsQueue, ^
__typeof__(self) strongSelf = weakSelf;
[strongSelf doSomething];
[strongSelf doSomethingElse];
} );

or in Swift:

dispatch_async(dispatch_get_main_queue()) { [weak self] in
if let strongSelf = self {
// See “Resolving Strong Reference Cycles for Closures” in The Swift Programming Language

I looked and looked at this trying to reason it out (guess I’m just slow). Finally, the light bulb lit, and I figured it out! When the block runs, it’s only captured ‘weakSelf’. At the instant the block starts up, ‘weakSelf’ is either ‘self’, or it’s nil. Your code (as Apple’s example does) can test to see if ‘strongSelf’ is set, and if so you can use ‘strongSelf->theIvar’ or the more normal ‘strongSelf.someProperty’ (the latter works fine with nil messaging, the former will crash if ‘strongSelf’ is nil).

If ‘weakSelf’ is equal to ‘self’, then ‘strongSelf’ retains it, and it stays retained until the block returns, when its released. It’s all or nothing.

I felt really good finally getting this, and its making my coding of blocks much easier.


If you’re puzzled by the use of __typeof__(self), it’s a non-standard clang macro that turns into the class of the parenthesized object, and was taken from GCC. The nice thing about using it is that you can make this line a Code Snippet (mine is called ‘WeakSelf’), and you don’t have to continually adjust the class type.

1) “Programming With ARC Release Notes, search for “For non-trivial cycles, however, you should use”

2) http://clang.llvm.org/docs/AutomaticReferenceCounting.html :

For __weak objects, the current pointee is retained and then released at the end of the current full-expression. This must execute atomically with respect to assignments and to the final release of the pointee.